Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493344

RESUMO

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Peçonhas/genética , Peçonhas/química , Proteômica , Toxinas Biológicas/genética , Serpentes , Peptídeos , Transcriptoma
2.
Nature ; 628(8006): 122-129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448590

RESUMO

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Assuntos
Caenorhabditis , Impressão Genômica , RNA de Interação com Piwi , Sequências Repetitivas de Ácido Nucleico , Animais , Feminino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamentos Genéticos , Pai , Genoma/genética , Impressão Genômica/genética , Organismos Hermafroditas/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Mães , Oócitos/metabolismo , RNA de Interação com Piwi/genética , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico/genética , RNA Mensageiro/genética , Toxinas Biológicas/genética , Transcrição Gênica
3.
Toxins (Basel) ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393163

RESUMO

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Assuntos
Anêmonas-do-Mar , Toxinas Biológicas , Animais , Anêmonas-do-Mar/genética , Peçonhas/genética , Toxinas Biológicas/genética , Transcriptoma , RNA
4.
mBio ; 15(2): e0329323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236063

RESUMO

Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.


Assuntos
Antitoxinas , Toxinas Biológicas , Toxinas Biológicas/genética , Antitoxinas/metabolismo , Bactérias/metabolismo , Células Procarióticas , Proteínas de Bactérias/metabolismo
5.
Biochimie ; 217: 95-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37473832

RESUMO

Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.


Assuntos
Antitoxinas , Sistemas Toxina-Antitoxina , Toxinas Biológicas , Sistemas Toxina-Antitoxina/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Células Procarióticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Nat Commun ; 14(1): 4861, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567881

RESUMO

Three-finger toxins (3FTXs) are a functionally diverse family of toxins, apparently unique to venoms of caenophidian snakes. Although the ancestral function of 3FTXs is antagonism of nicotinic acetylcholine receptors, redundancy conferred by the accumulation of duplicate genes has facilitated extensive neofunctionalization, such that derived members of the family interact with a range of targets. 3FTXs are members of the LY6/UPAR family, but their non-toxin ancestor remains unknown. Combining traditional phylogenetic approaches, manual synteny analysis, and machine learning techniques (including AlphaFold2 and ProtT5), we have reconstructed a detailed evolutionary history of 3FTXs. We identify their immediate ancestor as a non-secretory LY6, unique to squamate reptiles, and propose that changes in molecular ecology resulting from loss of a membrane-anchoring domain and changes in gene expression, paved the way for the evolution of one of the most important families of snake toxins.


Assuntos
Toxinas Três Dedos , Toxinas Biológicas , Animais , Filogenia , Serpentes/genética , Toxinas Biológicas/genética , Répteis , Venenos Elapídicos/genética , Evolução Molecular
7.
Environ Microbiol ; 25(6): 1200-1215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752722

RESUMO

Thermoacidophilic archaea lack sigma factors and the large inventory of heat shock proteins (HSPs) widespread in bacterial genomes, suggesting other strategies for handling thermal stress are involved. Heat shock transcriptomes for the thermoacidophilic archaeon Saccharolobus (f. Sulfolobus) solfataricus 98/2 revealed genes that were highly responsive to thermal stress, including transcriptional regulators YtrASs (Ssol_2420) and FadRSs (Ssol_0314), as well as type II toxin-antitoxin (TA) loci VapBC6 (Ssol_2337, Ssol_2338) and VapBC22 (Ssol_0819, Ssol_0818). The role, if any, of type II TA loci during stress response in microorganisms, such as Escherichia coli, is controversial. But, when genes encoding YtrASs , FadRSs , VapC22, VapB6, and VapC6 were systematically mutated in Sa. solfataricus 98/2, significant up-regulation of the other genes within this set was observed, implicating an interconnected regulatory network during thermal stress response. VapBC6 and VapBC22 have close homologues in other Sulfolobales, as well as in other archaea (e.g. Pyrococcus furiosus and Archaeoglobus fulgidus), and their corresponding genes were also heat shock responsive. The interplay between VapBC TA loci and heat shock regulators in Sa solfataricus 98/2 not only indicates a cellular mechanism for heat shock response that differs from bacteria but one that could have common features within the thermophilic archaea.


Assuntos
Antitoxinas , Sulfolobus solfataricus , Toxinas Biológicas , Antitoxinas/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Resposta ao Choque Térmico/genética , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Escherichia coli/genética
8.
Proc Natl Acad Sci U S A ; 120(8): e2217194120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800387

RESUMO

Secreted protein toxins are widely used weapons in conflicts between organisms. Elucidating how organisms genetically adapt to defend themselves against these toxins is fundamental to understanding the coevolutionary dynamics of competing organisms. Within yeast communities, "killer" toxins are secreted to kill nearby sensitive yeast, providing a fitness advantage in competitive growth environments. Natural yeast isolates vary in their sensitivity to these toxins, but to date, no polymorphic genetic factors contributing to defense have been identified. We investigated the variation in resistance to the killer toxin K28 across diverse natural isolates of the Saccharomyces cerevisiae population. Using large-scale linkage mapping, we discovered a novel defense factor, which we named KTD1. We identified many KTD1 alleles, which provided different levels of K28 resistance. KTD1 is a member of the DUP240 gene family of unknown function, which is rapidly evolving in a region spanning its two encoded transmembrane helices. We found that this domain is critical to KTD1's protective ability. Our findings implicate KTD1 as a key polymorphic factor in the defense against K28 toxin.


Assuntos
Micotoxinas , Proteínas de Saccharomyces cerevisiae , Toxinas Biológicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores Matadores de Levedura/genética , Fatores Matadores de Levedura/metabolismo , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Micotoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Toxins (Basel) ; 14(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548740

RESUMO

The evolution of venom and the selection pressures that act on toxins have been increasingly researched within toxinology in the last two decades, in part due to the exceptionally high rates of diversifying selection observed in animal toxins. In 2015, Sungar and Moran proposed the 'two-speed' model of toxin evolution linking evolutionary age of a group to the rates of selection acting on toxins but due to a lack of data, mammals were not included as less than 30 species of venomous mammal have been recorded, represented by elusive species which produce small amounts of venom. Due to advances in genomics and transcriptomics, the availability of toxin sequences from venomous mammals has been increasing. Using branch- and site-specific selection models, we present the rates of both episodic and pervasive selection acting upon venomous mammal toxins as a group for the first time. We identified seven toxin groups present within venomous mammals, representing Chiroptera, Eulipotyphla and Monotremata: KLK1, Plasminogen Activator, Desmallipins, PACAP, CRiSP, Kunitz Domain One and Kunitz Domain Two. All but one group (KLK1) was identified by our results to be evolving under both episodic and pervasive diversifying selection with four toxin groups having sites that were implicated in the fitness of the animal by TreeSAAP (Selection on Amino Acid Properties). Our results suggest that venomous mammal ecology, behaviour or genomic evolution are the main drivers of selection, although evolutionary age may still be a factor. Our conclusion from these results indicates that mammalian toxins are following the two-speed model of selection, evolving predominately under diversifying selection, fitting in with other younger venomous taxa like snakes and cone snails-with high amounts of accumulating mutations, leading to more novel adaptions in their toxins.


Assuntos
Quirópteros , Toxinas Biológicas , Animais , Toxinas Biológicas/genética , Toxinas Biológicas/toxicidade , Mamíferos/genética , Peçonhas/genética , Peçonhas/toxicidade , Serpentes , Perfilação da Expressão Gênica , Evolução Molecular
10.
Toxins (Basel) ; 14(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006205

RESUMO

Nemertea is a phylum of nonsegmented worms (supraphylum: Spiralia), also known as ribbon worms. The members of this phylum contain various toxins, including peptide toxins. Here, we provide a transcriptomic analysis of peptide toxins in 14 nemertean species, including Cephalothrix cf. simula, which was sequenced in the current study. The summarized data show that the number of toxin transcripts in the studied nemerteans varied from 12 to 82. The most represented groups of toxins were enzymes and ion channel inhibitors, which, in total, reached a proportion of 72% in some species, and the least represented were pore-forming toxins and neurotoxins, the total proportion of which did not exceed 18%. The study revealed that nemerteans possess a much greater variety of toxins than previously thought and showed that these animals are a promising object for the investigation of venom diversity and evolution, and in the search for new peptide toxins.


Assuntos
Invertebrados , Toxinas Biológicas , Animais , Invertebrados/genética , Peptídeos/genética , Peptídeos/toxicidade , Toxinas Biológicas/genética , Transcriptoma , Peçonhas
11.
Methods Mol Biol ; 2498: 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727542

RESUMO

Animal venoms are among the most complex natural secretions known, comprising a mixture of bioactive compounds often referred to as toxins. Venom arsenals are predominately made up of cysteine-rich peptide toxins that manipulate molecular targets, such as ion channels and receptors, making these venom peptides attractive candidates for the development of therapeutics to benefit human health. With the rise of omic strategies that utilize transcriptomic, proteomic, and bioinformatic methods, we are able to identify more venom proteins and peptides than ever before. However, identification and characterization of bioactive venom peptides remains a significant challenge due to the unique chemical structure and enormous number of peptides found in each venom arsenal (upward of 200 per organism). Here, we introduce a rapid and user-friendly in silico bioinformatic pipeline for the de novo identification and characterization of raw RNAseq reads from venom glands to elucidate cysteine-rich peptides from the arsenal of venomous organisms.Implementation: This project develops a user-friendly automated bioinformatics pipeline via a Galaxy workflow to identify novel venom peptides from raw RNAseq reads of terebrid snails. While designed for venomous terebrid snails, with minor adjustments, this pipeline can be made universal to identify secreted disulfide-rich peptide toxins from any venomous organism.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Biologia Computacional , Cisteína , Dissulfetos , Peptídeos/química , Proteômica , Caramujos , Toxinas Biológicas/genética , Peçonhas/genética
12.
Annu Rev Biomed Data Sci ; 5: 367-391, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609893

RESUMO

Biological replicators, from genes within a genome to whole organisms, are locked in conflicts. Comparative genomics has revealed a staggering diversity of molecular armaments and mechanisms regulating their deployment, collectively termed biological conflict systems. These encompass toxins used in inter- and intraspecific interactions, self/nonself discrimination, antiviral immune mechanisms, and counter-host effectors deployed by viruses and intragenomic selfish elements. These systems possess shared syntactical features in their organizational logic and a set of effectors targeting genetic information flow through the Central Dogma, certain membranes, and key molecules like NAD+. These principles can be exploited to discover new conflict systems through sensitive computational analyses. This has led to significant advances in our understanding of the biology of these systems and furnished new biotechnological reagents for genome editing, sequencing, and beyond. We discuss these advances using specific examples of toxins, restriction-modification, apoptosis, CRISPR/second messenger-regulated systems, and other enigmatic nucleic acid-targeting systems.


Assuntos
Genoma , Toxinas Biológicas , Evolução Biológica , Genômica , Toxinas Biológicas/genética
13.
Viruses ; 14(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35215838

RESUMO

The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now. In this study, we extracted, sequenced, and characterized the dsDNA and ssDNA viral community from a phyllosphere for the first time. We sampled leaves from winter wheat (Triticum aestivum), where we identified a total of 876 virus operational taxonomic units (vOTUs), mostly predicted to be bacteriophages with a lytic lifestyle. Remarkably, 848 of these vOTUs corresponded to new viral species, and we estimated a minimum of 2.0 × 106 viral particles per leaf. These results suggest that the wheat phyllosphere harbors a large and active community of novel bacterial viruses. Phylloviruses have potential applications as biocontrol agents against phytopathogenic bacteria or as microbiome modulators to increase plant growth-promoting bacteria.


Assuntos
Bacteriófagos/isolamento & purificação , Triticum/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Genoma Viral/genética , Metagenoma/genética , Microbiota , Folhas de Planta/microbiologia , Pseudomonadaceae/classificação , Pseudomonadaceae/genética , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/virologia , Toxinas Biológicas/genética
14.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989866

RESUMO

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Assuntos
Analgesia/métodos , Hipocinesia/fisiopatologia , Musaranhos/metabolismo , Toxinas Biológicas/metabolismo , Peçonhas/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/fisiopatologia , Dor/prevenção & controle , Homologia de Sequência de Aminoácidos , Musaranhos/genética , Trombina/antagonistas & inibidores , Trombina/metabolismo , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/genética , Peçonhas/genética
15.
mBio ; 12(5): e0238821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517761

RESUMO

Bacteria compete against related individuals by delivering toxins. In myxobacteria, a key delivery and kin discrimination mechanism is called outer membrane (OM) exchange (OME). Here, cells that display compatible polymorphic cell surface receptors recognize one another and bidirectionally transfer OM content. Included in the cargo is a suite of polymorphic SitA lipoprotein toxins. Consequently, OME between compatible cells that are not clonemates results in intoxication, while exchange between clonemates is harmonious because cells express a cognate repertoire of immunity proteins, which themselves are not transferred. SitA toxins belong to six nonhomologous families classified by sequence conservation within their N-terminal "escort domains" (EDs), while their C termini contain polymorphic nucleases that target the cytoplasmic compartment. To investigate how toxins delivered to the OM by OME translocate to the cytoplasm, we selected transposon mutants resistant to each family. Our screens identified eight genes that conferred resistance in a SitA family-specific manner. Most of these genes are predicted to localize to the cell envelope, and some resemble proteins that colicins exploit to gain cell entry. By constructing functional chimeric SitAs between families, we show that the ED determines the specificity of resistance. Importantly, a mutant that confers resistance to all six SitA families was discovered. This gene was named traC and plays an accessory role with traAB in OME. This work thus provides insight into the mechanism of kin discrimination in myxobacteria and provides working models for how SitA toxins exploit host proteins to gain cytoplasmic entry. IMPORTANCE Many bacterial species use diverse systems to deliver bacteriocins or toxins to neighboring competing cells. These systems are often selective in targeting cells that are related to themselves and therefore compete in the same niches for resources. How these systems specifically identify target cells and deliver toxins to particular cellular compartments is a fundamental question. This study uses the model social bacterium Myxococcus xanthus to unravel how its kin discrimination system, called outer membrane exchange, works. Along with the TraA polymorphic cell surface receptor that identifies related individuals with compatible receptors, this work discovered a new protein, called TraC, that functions in this discrimination system. Additionally, genetic screens identified host factors that are proposed to be involved in the cytoplasmic entry of lipoprotein toxins from the OM. This work complements and broadens our mechanistic understanding of how bacteria use transport systems to discriminate against related foes to build clonal populations.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipoproteínas/metabolismo , Myxococcus xanthus/metabolismo , Toxinas Biológicas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipoproteínas/genética , Myxococcus xanthus/genética , Toxinas Biológicas/genética
16.
Viruses ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372530

RESUMO

Viral infections lead to expeditious activation of the host's innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence of viperin, to mitochondria during infection. Furthermore, mitochondrial translocation of NSP4 was found to be impeded by viperin, leading to abridged cytosolic release of Cyt c and subsequent inhibition of intrinsic apoptosis. Additionally, co-immunoprecipitation studies revealed that viperin associated with NSP4 through regions including both its radical SAM domain and its C-terminal domain. Collectively, the present study demonstrated the role of viperin in restricting rotavirus egress from infected host cells by modulating NSP4 mediated apoptosis, highlighting a novel mechanism behind viperin's antiviral action in addition to the intricacy of viperin-virus interaction.


Assuntos
Apoptose , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Infecções por Rotavirus/genética , Rotavirus/fisiologia , Toxinas Biológicas/antagonistas & inibidores , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Células HT29 , Humanos , Imunidade Inata , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Rotavirus/química , Infecções por Rotavirus/imunologia , Toxinas Biológicas/imunologia , Células Vero , Proteínas não Estruturais Virais/imunologia , Replicação Viral
17.
Nat Commun ; 12(1): 3743, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145238

RESUMO

The extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.


Assuntos
Archaea/genética , Bactérias/genética , Proteínas Contráteis/genética , Sistemas de Translocação de Proteínas/genética , Toxinas Biológicas/metabolismo , Animais , Archaea/metabolismo , Bactérias/metabolismo , Bacteriófagos/metabolismo , Fungos , Nematoides , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico/fisiologia , Toxinas Biológicas/genética
18.
Toxins (Basel) ; 13(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066626

RESUMO

The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy's gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families-three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)-dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual's toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7-11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy's gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.


Assuntos
Colubridae/metabolismo , Venenos de Serpentes/metabolismo , Toxinas Biológicas/metabolismo , Transcriptoma , Animais , Colubridae/genética , Metaloproteases/genética , Metaloproteases/metabolismo , Toxinas Biológicas/genética
19.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33866357

RESUMO

MOTIVATION: Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. RESULTS: Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time ($>20x$ faster), coding sequence prediction ($>3x$ more accurate) and the number of toxins predicted (generating $>4x$ less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Venenos de Serpentes/genética , Serpentes/genética , Toxinas Biológicas/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Serpentes/classificação , Serpentes/metabolismo , Especificidade da Espécie , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
20.
Viruses ; 13(5)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923360

RESUMO

Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.


Assuntos
Bacteriófagos/genética , Toxinas Biológicas/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Biologia Computacional/métodos , Genoma Viral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Conformação Proteica , Proteômica/métodos , Análise de Sequência de DNA , Relação Estrutura-Atividade , Toxinas Biológicas/química , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...